5410/T4/Z2580游戏CPU使用分析
Exynos5410的情况比较特殊,因为我们所采取的两种软件都无法支持双四核,猜测这里显示的为四个(A15+A7)集群——也就是虚拟CPU的工作状况,不过并不确定,因此Exynos5410这部分的结果仅供参考。
Exynos 5410游戏初始状态
可以看到Exynos5410以四核600MHz左右的频率启动游戏,按照同样最高是四核A15的Tegra4的运行情况来说,这样的使用率与实际有所差距,仅供参考。而且整个过程Exynos5410也始终运行在400~600MHz的低频上面。我们猜测所采用的追踪工具并未监测到它的所有核心活动。
Exynos 5410游戏运行中状态
Exynos 5410游戏长时间运行状态
Tegra4方面,游戏以两个核心1.4GHz的频率启动,长时间的发热也导致了CPU核心降频,降至与骁龙800类似的1.1GHz四核启动的方式。
Tegra 4游戏初始状态
Tegra 4游戏运行中状态
随着时间推移,降频现象更加严重,最低可以到达510MHz,这时候画面已经出现了较为严重的幻灯片式的卡顿,无法正常进行。测试过程所采用的小米手机3为工程机,并不保证这里的散热策略与发售的正式机型相同。
Tegra 4游戏长时间运行状态
Tegra 4游戏长时间运行状态
Intel Atom Z2580的情况也比较特殊,本来双核2GHz的它被识别成了四线程,游戏以四线程全部活动启动。整个游戏过程该双核CPU并未出现明显的降频,基本都是在以高频核心+低频核心的工作方式来搭配。游戏长时间进行未出现明显卡顿。
Atom Z2580游戏初始状态
Atom Z2580游戏运行中状态
Atom Z2580游戏长时间运行状态
该部分测试可以看出,由于目前Cortex-A15和Krait的功耗依然很高,因此骁龙800、600以及Tegra4在运行大型游戏过程当中都出现了因为发热而采取的降频现象;工作方式大致为2~3个CPU核心高频工作进入游戏,随时间推移CPU核心频率下降,更多CPU核心加入工作;随后CPU核心频率继续下降,各个平台出现不同程度的卡顿。
也就是说以目前无论是A15还是骁龙Krait核心的性能,满足这种大型游戏需求仅需双核高频工作即可;但由于功耗和发热无法有效控制,导致整个系统出现降频。如果长时间无法散热,将直接影响画面流畅度。